檢視 貝茲曲線 的原始碼
←
貝茲曲線
跳轉到:
導覽
、
搜尋
根據以下的原因,您並無權限去做編輯這個頁面:
您剛才的請求只有這個使用者組的使用者才能使用:
使用者
你可以檢視並複製本頁面的原始碼。
[[分類:數學]][[分類:HTML]] ==二次貝茲曲線== #二次貝茲曲線畫出的是拋物線([https://hk.saowen.com/a/7044bdc2904adba9f386b3dd98a0e1537d490d8fbb7747ca9bc0a3903524fb16 參考〈二次貝塞爾曲線的實現〉]),無法畫出橢圓和雙曲線。故無法畫出正圓。 #所有拋物線都「相似」(不是相等),所有曲率的微線段都有。 #兩端點外只有一個控制點。 #拋物線方程式 ax<sup>2</sup>+bxy+cy<sup>2</sup>+dx+ey+f=0 則 b<sup>2</sup> - 4ac=0 ,即前三項為完全平方式。 ===參考=== #[https://hk.saowen.com/a/ef476160c12ec71175be70e8a98db60c4a7c316293efdba2762ede066982c552 貝塞爾(Bezier)曲線研究] #[https://tw.answers.yahoo.com/question/index?qid=20080427000016KK01361 為什麼b^2 – 4ac為二次曲線的判別式?] #[http://www.kut.com.tw/Upload//ProductProbation/File/數學高三甲上第二章第3節主題4觀念一.pdf 例題] #[https://stackoverflow.com/questions/1734745/how-to-create-circle-with-b%c3%a9zier-curves/1734859 How to create circle with Bézier curves?] #[https://oomake.com/question/343212 如何使用Bézier曲線創建圓?] #[https://www.jianshu.com/p/5198d8aa80c1 用三阶贝塞尔曲线拟合圆] ==參考文章== *[https://zh.wikipedia.org/wiki/貝茲曲線 貝茲曲線] *[http://blog.iderzheng.com/continuous-and-smooth-bezier-curve/ 連續平滑的貝塞爾曲線]
返回到
貝茲曲線
。
導航
個人工具
登入
名字空間
頁面
討論
變換
檢視
閱讀
檢視原始碼
檢視歷史
動作
搜尋
導覽
首頁
近期變動
隨機頁面
使用說明
工具箱
連入頁面
相關頁面修訂記錄
特殊頁面
頁面資訊