進階數學及科學/月考2:修訂版本之間的差異

出自六年制學程
跳轉到: 導覽搜尋
第 10 行: 第 10 行:
 
#*加速度-時間命名為 s<nowiki>''</nowiki>(x) 。
 
#*加速度-時間命名為 s<nowiki>''</nowiki>(x) 。
 
#說明:每圖兩種曲線
 
#說明:每圖兩種曲線
#*s'是s的切線斜率,取 x 為 0.2,0.4,0.6,0.8,1.0 時 s 在各點趨近的切線斜率,及 s' 在上述各點的值,比對兩者是否相符。(提示:取 切線斜率 時,點要密一點;但取值時點不用很密)
+
#*s'是s的切線斜率,取 x 為 0.2,0.4,0.6,0.8,1.0 時 s 在各點趨近的切線斜率,及 s' 在上述各點的值,比對兩者是否相符。(提示:取「切線斜率」時,點要密一點;但取值時點不用很密)
 
#*<nowiki>s''</nowiki>是s'的切線斜率,取 x 為 0.2,0.4,0.6,0.8,1.0 時 s' 在各點趨近的切線斜率,及 <nowiki>s''</nowiki> 在上述各點的值,比對兩者是否相符。
 
#*<nowiki>s''</nowiki>是s'的切線斜率,取 x 為 0.2,0.4,0.6,0.8,1.0 時 s' 在各點趨近的切線斜率,及 <nowiki>s''</nowiki> 在上述各點的值,比對兩者是否相符。
 
#*兩點之間的∆s=s'與 x 軸所夾的面積,求 x= 0.2 ~ 0.8 之間s'與 x 軸所夾的面積,及 s 在 0.2 與 0.8 的值,比對 ∆s 是否等於 s'與 x 軸所夾的面積。
 
#*兩點之間的∆s=s'與 x 軸所夾的面積,求 x= 0.2 ~ 0.8 之間s'與 x 軸所夾的面積,及 s 在 0.2 與 0.8 的值,比對 ∆s 是否等於 s'與 x 軸所夾的面積。

2017年1月11日 (三) 12:27的修訂版本

請復習以下兩個 wiki 頁:

  1. 位移、速度與加速度
  2. 多項式的微積分

題組一

  1. 設時間為 x 軸,位移為 y 軸, y=-0.1*x2+x ,求速度方程式與加速度方程式。
  2. 畫圖
    • 位移-時間命名為 s(x) 。
    • 速度-時間命名為 s'(x) 。
    • 加速度-時間命名為 s''(x) 。
  3. 說明:每圖兩種曲線
    • s'是s的切線斜率,取 x 為 0.2,0.4,0.6,0.8,1.0 時 s 在各點趨近的切線斜率,及 s' 在上述各點的值,比對兩者是否相符。(提示:取「切線斜率」時,點要密一點;但取值時點不用很密)
    • s''是s'的切線斜率,取 x 為 0.2,0.4,0.6,0.8,1.0 時 s' 在各點趨近的切線斜率,及 s'' 在上述各點的值,比對兩者是否相符。
    • 兩點之間的∆s=s'與 x 軸所夾的面積,求 x= 0.2 ~ 0.8 之間s'與 x 軸所夾的面積,及 s 在 0.2 與 0.8 的值,比對 ∆s 是否等於 s'與 x 軸所夾的面積。
    • ∆s'=s''與 x 軸所夾的面積,求 x= 0.2 ~ 0.8 之間 s'' 與 x 軸所夾的面積,及 s' 在 0.2 與 0.8 的值,比對 ∆s' 是否等於 s'' 與 x 軸所夾的面積。。

題組二:求微分

  1. 4x4
  2. 2x3
  3. -3x
  4. 5
  5. 6√x
  6. 4x4+2x3-3x+5

題組三:x2-2x-4

  1. x2-2x-4=0,用配方法求兩根。
  2. 對 y=x2-2x-4 畫圖,求最大值或最小值、兩根。
  3. 說明係數與圖形的關係。

題組四: 用鋁片做容量 100cm3之圓柱形罐頭,用什麼尺寸才可使材料最節省。

題組五 說明求導法則